\(\int (d+e x)^3 (a^2+2 a b x+b^2 x^2)^{3/2} \, dx\) [1556]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [B] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 28, antiderivative size = 172 \[ \int (d+e x)^3 \left (a^2+2 a b x+b^2 x^2\right )^{3/2} \, dx=\frac {(b d-a e)^3 (a+b x)^3 \sqrt {a^2+2 a b x+b^2 x^2}}{4 b^4}+\frac {3 e (b d-a e)^2 (a+b x)^4 \sqrt {a^2+2 a b x+b^2 x^2}}{5 b^4}+\frac {e^2 (b d-a e) (a+b x)^5 \sqrt {a^2+2 a b x+b^2 x^2}}{2 b^4}+\frac {e^3 (a+b x)^6 \sqrt {a^2+2 a b x+b^2 x^2}}{7 b^4} \]

[Out]

1/4*(-a*e+b*d)^3*(b*x+a)^3*((b*x+a)^2)^(1/2)/b^4+3/5*e*(-a*e+b*d)^2*(b*x+a)^4*((b*x+a)^2)^(1/2)/b^4+1/2*e^2*(-
a*e+b*d)*(b*x+a)^5*((b*x+a)^2)^(1/2)/b^4+1/7*e^3*(b*x+a)^6*((b*x+a)^2)^(1/2)/b^4

Rubi [A] (verified)

Time = 0.09 (sec) , antiderivative size = 172, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.071, Rules used = {660, 45} \[ \int (d+e x)^3 \left (a^2+2 a b x+b^2 x^2\right )^{3/2} \, dx=\frac {e^2 \sqrt {a^2+2 a b x+b^2 x^2} (a+b x)^5 (b d-a e)}{2 b^4}+\frac {3 e \sqrt {a^2+2 a b x+b^2 x^2} (a+b x)^4 (b d-a e)^2}{5 b^4}+\frac {\sqrt {a^2+2 a b x+b^2 x^2} (a+b x)^3 (b d-a e)^3}{4 b^4}+\frac {e^3 \sqrt {a^2+2 a b x+b^2 x^2} (a+b x)^6}{7 b^4} \]

[In]

Int[(d + e*x)^3*(a^2 + 2*a*b*x + b^2*x^2)^(3/2),x]

[Out]

((b*d - a*e)^3*(a + b*x)^3*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(4*b^4) + (3*e*(b*d - a*e)^2*(a + b*x)^4*Sqrt[a^2 +
2*a*b*x + b^2*x^2])/(5*b^4) + (e^2*(b*d - a*e)*(a + b*x)^5*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(2*b^4) + (e^3*(a +
b*x)^6*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(7*b^4)

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 660

Int[((d_.) + (e_.)*(x_))^(m_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(a + b*x + c*x^2)^Fra
cPart[p]/(c^IntPart[p]*(b/2 + c*x)^(2*FracPart[p])), Int[(d + e*x)^m*(b/2 + c*x)^(2*p), x], x] /; FreeQ[{a, b,
 c, d, e, m, p}, x] && EqQ[b^2 - 4*a*c, 0] &&  !IntegerQ[p] && NeQ[2*c*d - b*e, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {\sqrt {a^2+2 a b x+b^2 x^2} \int \left (a b+b^2 x\right )^3 (d+e x)^3 \, dx}{b^2 \left (a b+b^2 x\right )} \\ & = \frac {\sqrt {a^2+2 a b x+b^2 x^2} \int \left (\frac {(b d-a e)^3 \left (a b+b^2 x\right )^3}{b^3}+\frac {3 e (b d-a e)^2 \left (a b+b^2 x\right )^4}{b^4}+\frac {3 e^2 (b d-a e) \left (a b+b^2 x\right )^5}{b^5}+\frac {e^3 \left (a b+b^2 x\right )^6}{b^6}\right ) \, dx}{b^2 \left (a b+b^2 x\right )} \\ & = \frac {(b d-a e)^3 (a+b x)^3 \sqrt {a^2+2 a b x+b^2 x^2}}{4 b^4}+\frac {3 e (b d-a e)^2 (a+b x)^4 \sqrt {a^2+2 a b x+b^2 x^2}}{5 b^4}+\frac {e^2 (b d-a e) (a+b x)^5 \sqrt {a^2+2 a b x+b^2 x^2}}{2 b^4}+\frac {e^3 (a+b x)^6 \sqrt {a^2+2 a b x+b^2 x^2}}{7 b^4} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.05 (sec) , antiderivative size = 171, normalized size of antiderivative = 0.99 \[ \int (d+e x)^3 \left (a^2+2 a b x+b^2 x^2\right )^{3/2} \, dx=\frac {x \sqrt {(a+b x)^2} \left (35 a^3 \left (4 d^3+6 d^2 e x+4 d e^2 x^2+e^3 x^3\right )+21 a^2 b x \left (10 d^3+20 d^2 e x+15 d e^2 x^2+4 e^3 x^3\right )+7 a b^2 x^2 \left (20 d^3+45 d^2 e x+36 d e^2 x^2+10 e^3 x^3\right )+b^3 x^3 \left (35 d^3+84 d^2 e x+70 d e^2 x^2+20 e^3 x^3\right )\right )}{140 (a+b x)} \]

[In]

Integrate[(d + e*x)^3*(a^2 + 2*a*b*x + b^2*x^2)^(3/2),x]

[Out]

(x*Sqrt[(a + b*x)^2]*(35*a^3*(4*d^3 + 6*d^2*e*x + 4*d*e^2*x^2 + e^3*x^3) + 21*a^2*b*x*(10*d^3 + 20*d^2*e*x + 1
5*d*e^2*x^2 + 4*e^3*x^3) + 7*a*b^2*x^2*(20*d^3 + 45*d^2*e*x + 36*d*e^2*x^2 + 10*e^3*x^3) + b^3*x^3*(35*d^3 + 8
4*d^2*e*x + 70*d*e^2*x^2 + 20*e^3*x^3)))/(140*(a + b*x))

Maple [A] (verified)

Time = 2.41 (sec) , antiderivative size = 206, normalized size of antiderivative = 1.20

method result size
gosper \(\frac {x \left (20 b^{3} e^{3} x^{6}+70 x^{5} b^{2} e^{3} a +70 x^{5} b^{3} d \,e^{2}+84 x^{4} a^{2} b \,e^{3}+252 x^{4} a \,b^{2} d \,e^{2}+84 x^{4} d^{2} e \,b^{3}+35 x^{3} a^{3} e^{3}+315 x^{3} a^{2} b d \,e^{2}+315 x^{3} a \,b^{2} d^{2} e +35 d^{3} x^{3} b^{3}+140 a^{3} d \,e^{2} x^{2}+420 a^{2} b \,d^{2} e \,x^{2}+140 x^{2} a \,b^{2} d^{3}+210 x \,a^{3} d^{2} e +210 x \,a^{2} b \,d^{3}+140 a^{3} d^{3}\right ) \left (\left (b x +a \right )^{2}\right )^{\frac {3}{2}}}{140 \left (b x +a \right )^{3}}\) \(206\)
default \(\frac {x \left (20 b^{3} e^{3} x^{6}+70 x^{5} b^{2} e^{3} a +70 x^{5} b^{3} d \,e^{2}+84 x^{4} a^{2} b \,e^{3}+252 x^{4} a \,b^{2} d \,e^{2}+84 x^{4} d^{2} e \,b^{3}+35 x^{3} a^{3} e^{3}+315 x^{3} a^{2} b d \,e^{2}+315 x^{3} a \,b^{2} d^{2} e +35 d^{3} x^{3} b^{3}+140 a^{3} d \,e^{2} x^{2}+420 a^{2} b \,d^{2} e \,x^{2}+140 x^{2} a \,b^{2} d^{3}+210 x \,a^{3} d^{2} e +210 x \,a^{2} b \,d^{3}+140 a^{3} d^{3}\right ) \left (\left (b x +a \right )^{2}\right )^{\frac {3}{2}}}{140 \left (b x +a \right )^{3}}\) \(206\)
risch \(\frac {\sqrt {\left (b x +a \right )^{2}}\, b^{3} e^{3} x^{7}}{7 b x +7 a}+\frac {\sqrt {\left (b x +a \right )^{2}}\, \left (3 b^{2} e^{3} a +3 b^{3} d \,e^{2}\right ) x^{6}}{6 b x +6 a}+\frac {\sqrt {\left (b x +a \right )^{2}}\, \left (3 a^{2} b \,e^{3}+9 a \,b^{2} d \,e^{2}+3 d^{2} e \,b^{3}\right ) x^{5}}{5 b x +5 a}+\frac {\sqrt {\left (b x +a \right )^{2}}\, \left (a^{3} e^{3}+9 a^{2} b d \,e^{2}+9 a \,b^{2} d^{2} e +b^{3} d^{3}\right ) x^{4}}{4 b x +4 a}+\frac {\sqrt {\left (b x +a \right )^{2}}\, \left (3 a^{3} d \,e^{2}+9 a^{2} b \,d^{2} e +3 a \,b^{2} d^{3}\right ) x^{3}}{3 b x +3 a}+\frac {\sqrt {\left (b x +a \right )^{2}}\, \left (3 a^{3} d^{2} e +3 a^{2} b \,d^{3}\right ) x^{2}}{2 b x +2 a}+\frac {\sqrt {\left (b x +a \right )^{2}}\, a^{3} d^{3} x}{b x +a}\) \(289\)

[In]

int((e*x+d)^3*(b^2*x^2+2*a*b*x+a^2)^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/140*x*(20*b^3*e^3*x^6+70*a*b^2*e^3*x^5+70*b^3*d*e^2*x^5+84*a^2*b*e^3*x^4+252*a*b^2*d*e^2*x^4+84*b^3*d^2*e*x^
4+35*a^3*e^3*x^3+315*a^2*b*d*e^2*x^3+315*a*b^2*d^2*e*x^3+35*b^3*d^3*x^3+140*a^3*d*e^2*x^2+420*a^2*b*d^2*e*x^2+
140*a*b^2*d^3*x^2+210*a^3*d^2*e*x+210*a^2*b*d^3*x+140*a^3*d^3)*((b*x+a)^2)^(3/2)/(b*x+a)^3

Fricas [A] (verification not implemented)

none

Time = 0.30 (sec) , antiderivative size = 167, normalized size of antiderivative = 0.97 \[ \int (d+e x)^3 \left (a^2+2 a b x+b^2 x^2\right )^{3/2} \, dx=\frac {1}{7} \, b^{3} e^{3} x^{7} + a^{3} d^{3} x + \frac {1}{2} \, {\left (b^{3} d e^{2} + a b^{2} e^{3}\right )} x^{6} + \frac {3}{5} \, {\left (b^{3} d^{2} e + 3 \, a b^{2} d e^{2} + a^{2} b e^{3}\right )} x^{5} + \frac {1}{4} \, {\left (b^{3} d^{3} + 9 \, a b^{2} d^{2} e + 9 \, a^{2} b d e^{2} + a^{3} e^{3}\right )} x^{4} + {\left (a b^{2} d^{3} + 3 \, a^{2} b d^{2} e + a^{3} d e^{2}\right )} x^{3} + \frac {3}{2} \, {\left (a^{2} b d^{3} + a^{3} d^{2} e\right )} x^{2} \]

[In]

integrate((e*x+d)^3*(b^2*x^2+2*a*b*x+a^2)^(3/2),x, algorithm="fricas")

[Out]

1/7*b^3*e^3*x^7 + a^3*d^3*x + 1/2*(b^3*d*e^2 + a*b^2*e^3)*x^6 + 3/5*(b^3*d^2*e + 3*a*b^2*d*e^2 + a^2*b*e^3)*x^
5 + 1/4*(b^3*d^3 + 9*a*b^2*d^2*e + 9*a^2*b*d*e^2 + a^3*e^3)*x^4 + (a*b^2*d^3 + 3*a^2*b*d^2*e + a^3*d*e^2)*x^3
+ 3/2*(a^2*b*d^3 + a^3*d^2*e)*x^2

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 3305 vs. \(2 (121) = 242\).

Time = 0.96 (sec) , antiderivative size = 3305, normalized size of antiderivative = 19.22 \[ \int (d+e x)^3 \left (a^2+2 a b x+b^2 x^2\right )^{3/2} \, dx=\text {Too large to display} \]

[In]

integrate((e*x+d)**3*(b**2*x**2+2*a*b*x+a**2)**(3/2),x)

[Out]

Piecewise((sqrt(a**2 + 2*a*b*x + b**2*x**2)*(b**2*e**3*x**6/7 + x**5*(15*a*b**3*e**3/7 + 3*b**4*d*e**2)/(6*b**
2) + x**4*(36*a**2*b**2*e**3/7 + 12*a*b**3*d*e**2 - 11*a*(15*a*b**3*e**3/7 + 3*b**4*d*e**2)/(6*b) + 3*b**4*d**
2*e)/(5*b**2) + x**3*(4*a**3*b*e**3 + 18*a**2*b**2*d*e**2 - 5*a**2*(15*a*b**3*e**3/7 + 3*b**4*d*e**2)/(6*b**2)
 + 12*a*b**3*d**2*e - 9*a*(36*a**2*b**2*e**3/7 + 12*a*b**3*d*e**2 - 11*a*(15*a*b**3*e**3/7 + 3*b**4*d*e**2)/(6
*b) + 3*b**4*d**2*e)/(5*b) + b**4*d**3)/(4*b**2) + x**2*(a**4*e**3 + 12*a**3*b*d*e**2 + 18*a**2*b**2*d**2*e -
4*a**2*(36*a**2*b**2*e**3/7 + 12*a*b**3*d*e**2 - 11*a*(15*a*b**3*e**3/7 + 3*b**4*d*e**2)/(6*b) + 3*b**4*d**2*e
)/(5*b**2) + 4*a*b**3*d**3 - 7*a*(4*a**3*b*e**3 + 18*a**2*b**2*d*e**2 - 5*a**2*(15*a*b**3*e**3/7 + 3*b**4*d*e*
*2)/(6*b**2) + 12*a*b**3*d**2*e - 9*a*(36*a**2*b**2*e**3/7 + 12*a*b**3*d*e**2 - 11*a*(15*a*b**3*e**3/7 + 3*b**
4*d*e**2)/(6*b) + 3*b**4*d**2*e)/(5*b) + b**4*d**3)/(4*b))/(3*b**2) + x*(3*a**4*d*e**2 + 12*a**3*b*d**2*e + 6*
a**2*b**2*d**3 - 3*a**2*(4*a**3*b*e**3 + 18*a**2*b**2*d*e**2 - 5*a**2*(15*a*b**3*e**3/7 + 3*b**4*d*e**2)/(6*b*
*2) + 12*a*b**3*d**2*e - 9*a*(36*a**2*b**2*e**3/7 + 12*a*b**3*d*e**2 - 11*a*(15*a*b**3*e**3/7 + 3*b**4*d*e**2)
/(6*b) + 3*b**4*d**2*e)/(5*b) + b**4*d**3)/(4*b**2) - 5*a*(a**4*e**3 + 12*a**3*b*d*e**2 + 18*a**2*b**2*d**2*e
- 4*a**2*(36*a**2*b**2*e**3/7 + 12*a*b**3*d*e**2 - 11*a*(15*a*b**3*e**3/7 + 3*b**4*d*e**2)/(6*b) + 3*b**4*d**2
*e)/(5*b**2) + 4*a*b**3*d**3 - 7*a*(4*a**3*b*e**3 + 18*a**2*b**2*d*e**2 - 5*a**2*(15*a*b**3*e**3/7 + 3*b**4*d*
e**2)/(6*b**2) + 12*a*b**3*d**2*e - 9*a*(36*a**2*b**2*e**3/7 + 12*a*b**3*d*e**2 - 11*a*(15*a*b**3*e**3/7 + 3*b
**4*d*e**2)/(6*b) + 3*b**4*d**2*e)/(5*b) + b**4*d**3)/(4*b))/(3*b))/(2*b**2) + (3*a**4*d**2*e + 4*a**3*b*d**3
- 2*a**2*(a**4*e**3 + 12*a**3*b*d*e**2 + 18*a**2*b**2*d**2*e - 4*a**2*(36*a**2*b**2*e**3/7 + 12*a*b**3*d*e**2
- 11*a*(15*a*b**3*e**3/7 + 3*b**4*d*e**2)/(6*b) + 3*b**4*d**2*e)/(5*b**2) + 4*a*b**3*d**3 - 7*a*(4*a**3*b*e**3
 + 18*a**2*b**2*d*e**2 - 5*a**2*(15*a*b**3*e**3/7 + 3*b**4*d*e**2)/(6*b**2) + 12*a*b**3*d**2*e - 9*a*(36*a**2*
b**2*e**3/7 + 12*a*b**3*d*e**2 - 11*a*(15*a*b**3*e**3/7 + 3*b**4*d*e**2)/(6*b) + 3*b**4*d**2*e)/(5*b) + b**4*d
**3)/(4*b))/(3*b**2) - 3*a*(3*a**4*d*e**2 + 12*a**3*b*d**2*e + 6*a**2*b**2*d**3 - 3*a**2*(4*a**3*b*e**3 + 18*a
**2*b**2*d*e**2 - 5*a**2*(15*a*b**3*e**3/7 + 3*b**4*d*e**2)/(6*b**2) + 12*a*b**3*d**2*e - 9*a*(36*a**2*b**2*e*
*3/7 + 12*a*b**3*d*e**2 - 11*a*(15*a*b**3*e**3/7 + 3*b**4*d*e**2)/(6*b) + 3*b**4*d**2*e)/(5*b) + b**4*d**3)/(4
*b**2) - 5*a*(a**4*e**3 + 12*a**3*b*d*e**2 + 18*a**2*b**2*d**2*e - 4*a**2*(36*a**2*b**2*e**3/7 + 12*a*b**3*d*e
**2 - 11*a*(15*a*b**3*e**3/7 + 3*b**4*d*e**2)/(6*b) + 3*b**4*d**2*e)/(5*b**2) + 4*a*b**3*d**3 - 7*a*(4*a**3*b*
e**3 + 18*a**2*b**2*d*e**2 - 5*a**2*(15*a*b**3*e**3/7 + 3*b**4*d*e**2)/(6*b**2) + 12*a*b**3*d**2*e - 9*a*(36*a
**2*b**2*e**3/7 + 12*a*b**3*d*e**2 - 11*a*(15*a*b**3*e**3/7 + 3*b**4*d*e**2)/(6*b) + 3*b**4*d**2*e)/(5*b) + b*
*4*d**3)/(4*b))/(3*b))/(2*b))/b**2) + (a/b + x)*(a**4*d**3 - a**2*(3*a**4*d*e**2 + 12*a**3*b*d**2*e + 6*a**2*b
**2*d**3 - 3*a**2*(4*a**3*b*e**3 + 18*a**2*b**2*d*e**2 - 5*a**2*(15*a*b**3*e**3/7 + 3*b**4*d*e**2)/(6*b**2) +
12*a*b**3*d**2*e - 9*a*(36*a**2*b**2*e**3/7 + 12*a*b**3*d*e**2 - 11*a*(15*a*b**3*e**3/7 + 3*b**4*d*e**2)/(6*b)
 + 3*b**4*d**2*e)/(5*b) + b**4*d**3)/(4*b**2) - 5*a*(a**4*e**3 + 12*a**3*b*d*e**2 + 18*a**2*b**2*d**2*e - 4*a*
*2*(36*a**2*b**2*e**3/7 + 12*a*b**3*d*e**2 - 11*a*(15*a*b**3*e**3/7 + 3*b**4*d*e**2)/(6*b) + 3*b**4*d**2*e)/(5
*b**2) + 4*a*b**3*d**3 - 7*a*(4*a**3*b*e**3 + 18*a**2*b**2*d*e**2 - 5*a**2*(15*a*b**3*e**3/7 + 3*b**4*d*e**2)/
(6*b**2) + 12*a*b**3*d**2*e - 9*a*(36*a**2*b**2*e**3/7 + 12*a*b**3*d*e**2 - 11*a*(15*a*b**3*e**3/7 + 3*b**4*d*
e**2)/(6*b) + 3*b**4*d**2*e)/(5*b) + b**4*d**3)/(4*b))/(3*b))/(2*b**2) - a*(3*a**4*d**2*e + 4*a**3*b*d**3 - 2*
a**2*(a**4*e**3 + 12*a**3*b*d*e**2 + 18*a**2*b**2*d**2*e - 4*a**2*(36*a**2*b**2*e**3/7 + 12*a*b**3*d*e**2 - 11
*a*(15*a*b**3*e**3/7 + 3*b**4*d*e**2)/(6*b) + 3*b**4*d**2*e)/(5*b**2) + 4*a*b**3*d**3 - 7*a*(4*a**3*b*e**3 + 1
8*a**2*b**2*d*e**2 - 5*a**2*(15*a*b**3*e**3/7 + 3*b**4*d*e**2)/(6*b**2) + 12*a*b**3*d**2*e - 9*a*(36*a**2*b**2
*e**3/7 + 12*a*b**3*d*e**2 - 11*a*(15*a*b**3*e**3/7 + 3*b**4*d*e**2)/(6*b) + 3*b**4*d**2*e)/(5*b) + b**4*d**3)
/(4*b))/(3*b**2) - 3*a*(3*a**4*d*e**2 + 12*a**3*b*d**2*e + 6*a**2*b**2*d**3 - 3*a**2*(4*a**3*b*e**3 + 18*a**2*
b**2*d*e**2 - 5*a**2*(15*a*b**3*e**3/7 + 3*b**4*d*e**2)/(6*b**2) + 12*a*b**3*d**2*e - 9*a*(36*a**2*b**2*e**3/7
 + 12*a*b**3*d*e**2 - 11*a*(15*a*b**3*e**3/7 + 3*b**4*d*e**2)/(6*b) + 3*b**4*d**2*e)/(5*b) + b**4*d**3)/(4*b**
2) - 5*a*(a**4*e**3 + 12*a**3*b*d*e**2 + 18*a**2*b**2*d**2*e - 4*a**2*(36*a**2*b**2*e**3/7 + 12*a*b**3*d*e**2
- 11*a*(15*a*b**3*e**3/7 + 3*b**4*d*e**2)/(6*b) + 3*b**4*d**2*e)/(5*b**2) + 4*a*b**3*d**3 - 7*a*(4*a**3*b*e**3
 + 18*a**2*b**2*d*e**2 - 5*a**2*(15*a*b**3*e**3/7 + 3*b**4*d*e**2)/(6*b**2) + 12*a*b**3*d**2*e - 9*a*(36*a**2*
b**2*e**3/7 + 12*a*b**3*d*e**2 - 11*a*(15*a*b**3*e**3/7 + 3*b**4*d*e**2)/(6*b) + 3*b**4*d**2*e)/(5*b) + b**4*d
**3)/(4*b))/(3*b))/(2*b))/b)*log(a/b + x)/sqrt(b**2*(a/b + x)**2), Ne(b**2, 0)), (((a**2 + 2*a*b*x)**(5/2)*(-a
**3*e**3 + 6*a**2*b*d*e**2 - 12*a*b**2*d**2*e + 8*b**3*d**3)/(40*b**3) + (a**2 + 2*a*b*x)**(7/2)*(3*a**2*e**3
- 12*a*b*d*e**2 + 12*b**2*d**2*e)/(56*a*b**3) + (a**2 + 2*a*b*x)**(9/2)*(-3*a*e**3 + 6*b*d*e**2)/(72*a**2*b**3
) + e**3*(a**2 + 2*a*b*x)**(11/2)/(88*a**3*b**3))/(a*b), Ne(a*b, 0)), ((a**2)**(3/2)*Piecewise((d**3*x, Eq(e,
0)), ((d + e*x)**4/(4*e), True)), True))

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 400 vs. \(2 (120) = 240\).

Time = 0.20 (sec) , antiderivative size = 400, normalized size of antiderivative = 2.33 \[ \int (d+e x)^3 \left (a^2+2 a b x+b^2 x^2\right )^{3/2} \, dx=\frac {1}{4} \, {\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )}^{\frac {3}{2}} d^{3} x - \frac {3 \, {\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )}^{\frac {3}{2}} a d^{2} e x}{4 \, b} + \frac {3 \, {\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )}^{\frac {3}{2}} a^{2} d e^{2} x}{4 \, b^{2}} - \frac {{\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )}^{\frac {3}{2}} a^{3} e^{3} x}{4 \, b^{3}} + \frac {{\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )}^{\frac {5}{2}} e^{3} x^{2}}{7 \, b^{2}} + \frac {{\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )}^{\frac {3}{2}} a d^{3}}{4 \, b} - \frac {3 \, {\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )}^{\frac {3}{2}} a^{2} d^{2} e}{4 \, b^{2}} + \frac {3 \, {\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )}^{\frac {3}{2}} a^{3} d e^{2}}{4 \, b^{3}} - \frac {{\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )}^{\frac {3}{2}} a^{4} e^{3}}{4 \, b^{4}} + \frac {{\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )}^{\frac {5}{2}} d e^{2} x}{2 \, b^{2}} - \frac {3 \, {\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )}^{\frac {5}{2}} a e^{3} x}{14 \, b^{3}} + \frac {3 \, {\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )}^{\frac {5}{2}} d^{2} e}{5 \, b^{2}} - \frac {7 \, {\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )}^{\frac {5}{2}} a d e^{2}}{10 \, b^{3}} + \frac {17 \, {\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )}^{\frac {5}{2}} a^{2} e^{3}}{70 \, b^{4}} \]

[In]

integrate((e*x+d)^3*(b^2*x^2+2*a*b*x+a^2)^(3/2),x, algorithm="maxima")

[Out]

1/4*(b^2*x^2 + 2*a*b*x + a^2)^(3/2)*d^3*x - 3/4*(b^2*x^2 + 2*a*b*x + a^2)^(3/2)*a*d^2*e*x/b + 3/4*(b^2*x^2 + 2
*a*b*x + a^2)^(3/2)*a^2*d*e^2*x/b^2 - 1/4*(b^2*x^2 + 2*a*b*x + a^2)^(3/2)*a^3*e^3*x/b^3 + 1/7*(b^2*x^2 + 2*a*b
*x + a^2)^(5/2)*e^3*x^2/b^2 + 1/4*(b^2*x^2 + 2*a*b*x + a^2)^(3/2)*a*d^3/b - 3/4*(b^2*x^2 + 2*a*b*x + a^2)^(3/2
)*a^2*d^2*e/b^2 + 3/4*(b^2*x^2 + 2*a*b*x + a^2)^(3/2)*a^3*d*e^2/b^3 - 1/4*(b^2*x^2 + 2*a*b*x + a^2)^(3/2)*a^4*
e^3/b^4 + 1/2*(b^2*x^2 + 2*a*b*x + a^2)^(5/2)*d*e^2*x/b^2 - 3/14*(b^2*x^2 + 2*a*b*x + a^2)^(5/2)*a*e^3*x/b^3 +
 3/5*(b^2*x^2 + 2*a*b*x + a^2)^(5/2)*d^2*e/b^2 - 7/10*(b^2*x^2 + 2*a*b*x + a^2)^(5/2)*a*d*e^2/b^3 + 17/70*(b^2
*x^2 + 2*a*b*x + a^2)^(5/2)*a^2*e^3/b^4

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 337 vs. \(2 (120) = 240\).

Time = 0.27 (sec) , antiderivative size = 337, normalized size of antiderivative = 1.96 \[ \int (d+e x)^3 \left (a^2+2 a b x+b^2 x^2\right )^{3/2} \, dx=\frac {1}{7} \, b^{3} e^{3} x^{7} \mathrm {sgn}\left (b x + a\right ) + \frac {1}{2} \, b^{3} d e^{2} x^{6} \mathrm {sgn}\left (b x + a\right ) + \frac {1}{2} \, a b^{2} e^{3} x^{6} \mathrm {sgn}\left (b x + a\right ) + \frac {3}{5} \, b^{3} d^{2} e x^{5} \mathrm {sgn}\left (b x + a\right ) + \frac {9}{5} \, a b^{2} d e^{2} x^{5} \mathrm {sgn}\left (b x + a\right ) + \frac {3}{5} \, a^{2} b e^{3} x^{5} \mathrm {sgn}\left (b x + a\right ) + \frac {1}{4} \, b^{3} d^{3} x^{4} \mathrm {sgn}\left (b x + a\right ) + \frac {9}{4} \, a b^{2} d^{2} e x^{4} \mathrm {sgn}\left (b x + a\right ) + \frac {9}{4} \, a^{2} b d e^{2} x^{4} \mathrm {sgn}\left (b x + a\right ) + \frac {1}{4} \, a^{3} e^{3} x^{4} \mathrm {sgn}\left (b x + a\right ) + a b^{2} d^{3} x^{3} \mathrm {sgn}\left (b x + a\right ) + 3 \, a^{2} b d^{2} e x^{3} \mathrm {sgn}\left (b x + a\right ) + a^{3} d e^{2} x^{3} \mathrm {sgn}\left (b x + a\right ) + \frac {3}{2} \, a^{2} b d^{3} x^{2} \mathrm {sgn}\left (b x + a\right ) + \frac {3}{2} \, a^{3} d^{2} e x^{2} \mathrm {sgn}\left (b x + a\right ) + a^{3} d^{3} x \mathrm {sgn}\left (b x + a\right ) + \frac {{\left (35 \, a^{4} b^{3} d^{3} - 21 \, a^{5} b^{2} d^{2} e + 7 \, a^{6} b d e^{2} - a^{7} e^{3}\right )} \mathrm {sgn}\left (b x + a\right )}{140 \, b^{4}} \]

[In]

integrate((e*x+d)^3*(b^2*x^2+2*a*b*x+a^2)^(3/2),x, algorithm="giac")

[Out]

1/7*b^3*e^3*x^7*sgn(b*x + a) + 1/2*b^3*d*e^2*x^6*sgn(b*x + a) + 1/2*a*b^2*e^3*x^6*sgn(b*x + a) + 3/5*b^3*d^2*e
*x^5*sgn(b*x + a) + 9/5*a*b^2*d*e^2*x^5*sgn(b*x + a) + 3/5*a^2*b*e^3*x^5*sgn(b*x + a) + 1/4*b^3*d^3*x^4*sgn(b*
x + a) + 9/4*a*b^2*d^2*e*x^4*sgn(b*x + a) + 9/4*a^2*b*d*e^2*x^4*sgn(b*x + a) + 1/4*a^3*e^3*x^4*sgn(b*x + a) +
a*b^2*d^3*x^3*sgn(b*x + a) + 3*a^2*b*d^2*e*x^3*sgn(b*x + a) + a^3*d*e^2*x^3*sgn(b*x + a) + 3/2*a^2*b*d^3*x^2*s
gn(b*x + a) + 3/2*a^3*d^2*e*x^2*sgn(b*x + a) + a^3*d^3*x*sgn(b*x + a) + 1/140*(35*a^4*b^3*d^3 - 21*a^5*b^2*d^2
*e + 7*a^6*b*d*e^2 - a^7*e^3)*sgn(b*x + a)/b^4

Mupad [F(-1)]

Timed out. \[ \int (d+e x)^3 \left (a^2+2 a b x+b^2 x^2\right )^{3/2} \, dx=\int {\left (d+e\,x\right )}^3\,{\left (a^2+2\,a\,b\,x+b^2\,x^2\right )}^{3/2} \,d x \]

[In]

int((d + e*x)^3*(a^2 + b^2*x^2 + 2*a*b*x)^(3/2),x)

[Out]

int((d + e*x)^3*(a^2 + b^2*x^2 + 2*a*b*x)^(3/2), x)